Mark Scheme Motion Graph Past Paper Questions Jan 2002 to Jan 2009

1(a)(i) rate of change of velocity

[or
$$a = \frac{\Delta v}{t}$$
] \checkmark

Q1 Jan 2002

- (ii) (acceleration) has (magnitude and) direction ✓ (2)
- (b)(i) (acceleration) is the gradient (or slope) of the graph \checkmark
 - (ii) (displacement) is the area (under the graph) ✓ (2)

(c) velocity

graph to show:

(linear) increase to $t = 2.0 \pm 0.2 \text{ s}$ \checkmark uniform velocity between 2.0 s and 6.0 s \checkmark (linear) decrease from $6.0 \pm 0.2 \text{ s}$ to 8.0 s \checkmark zero velocity after t = 8.0 s

(4)

(8)

Q1 Jun 2002

1(a) AB: (uniform) acceleration ✓

BC: constant velocity/speed or zero acceleration ✓

CD: negative acceleration or deceleration or decreasing speed/velocity ✓

DE: stationary or zero velocity ✓

EF; (uniform) acceleration in opposite direction \checkmark (5)

(b) area under the graph ✓

(1)

(c) distance is a scalar and thus is the total area under the graph [or the idea that the train travels in the opposite direction] ✓ displacement is a vector and therefore the areas cancel ✓

(2)

(8)

5

(a)(i) acceleration ✓

Q5 Jun 2003

- (a)(ii) both represent acceleration of free fall [or same acceleration] ✓
- (a)(iii) height/distance ball is dropped from above the ground [or displacement] ✓
- (a)(iv) moving in the opposite direction \checkmark
- (a)(v) kinetic energy is lost in the collision [or inelastic collision] ✓

(5)

- (b)(i) $v^2 = 2 \times 9.81 \times 1.2 \checkmark$ $v = 4.9 \text{ m s}^{-1} \checkmark (4.85 \text{ m s}^{-1})$
- (b)(ii) $u^2 = 2 \times 9.81 \times 0.75 \checkmark$ $u = 3.8 \text{ m s}^{-1} \checkmark (3.84 \text{ m s}^{-1})$
- (b)(iii) change in momentum = $0.15 \times 3.84 0.15 \times 4.85$ = -1.3 kg m s^{-1} (allow C.E. from (b)(i) and (b)(ii)) (1.25 kg m s⁻¹)
- (b)(iv) $F = \frac{1.3}{0.10} \checkmark$ = 13 N \checkmark (allow C.E. from (b)(iii)) (8)

Question 4

(a)(i) car A: travels at constant speed ✓

Q4 Jan 2005

- (ii) car B: accelerates for first 5 secs (or up to 18 m s⁻¹) ✓ then travels at constant speed ✓ (3)
- (b)(i) car A: distance = 5.0×16 \checkmark = $80 \text{ m} \checkmark$
 - (ii) car B: (distance = area under graph) distance = $[5.0 \times \frac{1}{2} (18 + 14)] \checkmark$ = 80 m \checkmark (4)
- (c) car B is initially slower than car A (for first 2.5 s) ✓
 distance apart therefore increases ✓
 cars have same speed at 2.5 s ✓
 after 2.5 s, car B travels faster than car A (or separation deceases) ✓

 max(3)
 (10)

Question 1	Q1 Jan 2006	
(a)	scales ✓ six points correctly plotted ✓ trendline ✓	3
(b)	average acceleration = $\frac{26}{25}$ = 1.0(4) m s ⁻² \checkmark (allow C.E. for incorrect values used in acceleration calculation)	2
(c)	area under graph ✓ = 510 ± 30 m ✓	2
(d)	(graph to show force starting from <i>y</i> -axis) decreasing (not a straight line) ✓ to zero (at end of graph) ✓	2
(e)	(since) gradient of a velocity-time graph gives acceleration ✓ first graph shows acceleration is decreasing ✓	2
	Total	11

Q6 Jun 2006

Question 6		
(a) (i) (ii)	(use of $a = \frac{\Delta v}{\Delta t}$ gives) $a = \frac{4.5}{3600}$ $= 1.25 \times 10^{-3} \text{m s}^{-2} \checkmark$ (use of $v^2 = u^2 + 2as$ gives) $0 = 4.5^2 - 2 \times 1.25 \times 10^{-3} \times s \checkmark$ $s \left(= \frac{20.25}{2.5 \times 10^{-3}} \right) = 8.1 \times 10^3 \text{m} \checkmark$	4
(b)	distance increasing curve ✓ correct curve ✓	2
(c)	gradient (slope) of graph represents speed ✓ hence graph has decreasing gradient ✓	2
	Total	8

Question 2			
(a) (i)	(use of $a = (v - u) \div t$ gives) acceleration = 29 ÷ 2.0 = 14.5 m s ⁻² Q2 Jan 20	007 ✓	
(ii)	(use of $s = ut + \frac{1}{2} at^2$) $s = \frac{1}{2} \times 14.5 \times 2^2$ s = 29 m	√ √	4
(iii)	(use of distance = speed \times time gives) s = 29 \times 15 = 435 m	✓	
(b) (i)	reaction time acceleration over 2.0 s constant speed	√ √ √	6
(ii)	(use of distance = average speed × time distance travelled by antelope = 2 × 12.5 + 14.5 × 25 = 387.5 ✓	//	
(iii)	distance = 100 + 387.5 - 464 = 23 m ✓ (23.5)	✓	
		Total	10

Question 1		
(a)	gradient (or slope or steepness) is changing ✓ or graph a curve (or not a straight line)	
(b)	25 ± 3 m ✓ Q1 Jun 2007	1
(c)	(use of speed = distance ÷ time gives)	
	speed = 100 ÷ 11	1
	speed = $9.1 \pm 0.2 \mathrm{m s^{-1}} \checkmark$	
(d) (i)	constant acceleration ✓ or acceleration stays the same or velocity increases uniformly with time	
(ii)	(use of $s = ut + \frac{1}{2} at^2$ gives)	3
	$a = 2 \times 100 \div (11^2) \checkmark$	
	$a = 1.7 \mathrm{m s^{-2}} \checkmark$	
	Total	6

Question 1		
(a)	axes labelled correctly with correct units shown ✓ suitable scales ✓ Q1 Jan 2009 6 points plotted correctly ✓ all points plotted correctly ✓ both sections of line drawn correctly ✓	5
(b) (i)	the gradient (of the slope section) represents the deceleration/calculates $5\text{m s}^{-2}\checkmark$ (deceleration is uniform because) the gradient is constant/line is straight \checkmark distance travelled = area under line (0 to 3.5s or 0.5 to 3.5s) \checkmark (= 15.0×0.5) = 7.5m in first $0.5\text{s}\checkmark$ (= $0.5 \times 15.0 \times 3.0$) or $\text{s} = \frac{1}{2}(\text{u} + \text{v})\text{t}$, etc) = 22.5m (from 0.5s to 3.5s) \checkmark (= $\frac{1}{2}(0.5 + 3.5) \times 15$ gets all three method marks) (total distance travelled = $7.5 + 22.5$) = $30\text{m}\checkmark$	6
	Total	11